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Mathematical Assumptions versus Biological Reality: Myths in
Affected Sib Pair Linkage Analysis
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Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland

Affected sib pair (ASP) analysis has become common ever since it was shown that, under very specific assumptions,
ASPs afford a powerful design for linkage analysis. In 2003, Vieland and Huang, on the basis of a “fundamental
heterogeneity equation,” proved that heterogeneity and epistasis are confounded in ASP linkage analysis. A much
more serious limitation of ASP linkage analysis is the implicit assumption that randomly sampled sib pairs share
half their alleles identical by descent at any locus, whereas a critical assumption underlying Vieland and Huang’s
proof is that of joint Hardy-Weinberg equilibrium proportions at two trait loci. These are considered as examples
of mathematical assumptions that may not always reflect biological reality. More-robust sib-pair designs and
appropriate methods for their analysis have long been available.

Blackwelder and Elston (1985) investigated the design
and analysis of sibship data to detect linkage between a
genetic marker and a dichotomous trait. By considering
tests for samples of affected sib pairs (ASPs), they
showed that, for most rare-disease models, the mean test
is the most powerful. Similarly, in the case of a rare
protective allele, for most models, the mean test based
on unaffected sib pairs would be the most powerful. The
necessary assumptions underlying the validity of such a
design were clearly stated but—until very recently—
largely ignored. Vieland and Huang (2003b) stated that
“as a matter of mathematical principle” two-locus het-
erogeneity and two-locus epistasis cannot be distin-
guished on the basis of ASP marker data. In this report,
we consider these cases as two examples of the same
unfortunate phenomenon: the misuse of mathematical
proofs by ignoring the underlying assumptions necessary
for their validity. In the former case, potential users of
the method were fully cautioned, whereas in the latter
case a critical assumption was not even mentioned by
the authors under their heading “Assumptions and
Notation.”
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Performing a linkage analysis with only ASPs is anal-
ogous to performing an epidemiological study without
controls. It is now well established that unselected sib
pairs tend to share more than half their alleles identical
by descent, especially in an inbred population (Leute-
negger et al. 2002). Zöllner et al. (2004) found that, in
their sample of 148 nuclear families from the Hutterite
population of South Dakota, “the signal of increased
sharing is spread broadly across the genome, and no
single chromosomal location reaches genomewide sig-
nificance” (p. 65), with pointwise significance at the 5%
level occurring on chromosomes 1, 5, 8, 10, and 15. In
his classic work on the use of sib pairs to detect linkage,
Penrose (1935) pointed out that “four classes will be
formed according to whether the sibs are like in both
characters, unlike in both, or alike in one and unlike in
the other” (p. 133), with respect to the characters under
investigation for linkage. It was suggested by Elston et
al. (1996) that, in any ASP study, an unaffected sib
should be recruited for half the ASPs, so that, for an
increase of only 25% in sample size, the concordantly
affected sib pairs would be properly controlled by an
equal number of discordant sib pairs (DSPs). Most re-
cently, Lemire et al. (2004) have again pointed out the
need to have DSPs as controls and have devised a statistic
that contrasts the two types of sib pairs to overcome the
problem. For independent sib pairs, their statistic is es-
sentially identical to that used by Elston et al. (1973).
Although it was not explicitly identified as such, this
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method of analysis is mathematically identical to use of
the regression statistic proposed by Haseman and Elston
in 1972 (HE). That method can be used for the linkage
analysis of any quantitative trait; a quantitative trait
subsumes a binary trait that takes on only two values,
which can, without loss of generality, be taken to be 0
and 1. In the original HE method, the squared sib-pair
difference (which is always zero for concordant pairs
and nonzero for discordant pairs) is regressed on an
estimate of the proportion of alleles the sibs share iden-
tical by descent at a marker locus and a test performed
to determine whether the regression coefficient is sig-
nificantly negative. This is mathematically identical to
testing whether the mean proportion of marker alleles
shared identical by descent is larger for concordant pairs
than for DSPs, which is the method proposed by Lemire
et al. (2004). As noted by Schaid et al. (2003), whether
one regresses the squared sib-pair trait difference on the
estimated proportion of alleles identical by descent or
regresses that proportion on the squared sib-pair trait
difference, the test statistic is the same. The validity of
the original HE method for binary traits was again
pointed out by Zeegers et al. (2003). If some sibships
contain more than one unaffected sib, the method pools
the concordantly affected with the concordantly unaf-
fected sibs, comparing them with the DSPs. A recent
example of this method of analysis, appropriately al-
lowing for the dependence of sib pairs within sibships,
was published by Wiesner et al. (2003). Implementation
of the HE method in the computer program SIBPAL was
first made generally available as part of the program
package S.A.G.E. almost 20 years ago, but it is current-
ly much extended in S.A.G.E. 5.0, in a model that al-
lows for covariates, marker-covariate interactions, and
epistasis.

Bhende et al. (1952) first demonstrated that lack of
the H antigen, an intermediary point in the production
of the corresponding A and B antigens at the ABO locus,
results in the apparent masking of the A and B alleles.
This null phenotype—discovered among the natives of
Bombay, India—was called “the Bombay phenotype,”
to distinguish it from that of other individuals with the
O blood group. Lack of the H antigen was subsequently
shown to be a rare recessive trait that segregated in fam-
ilies (Levine et al. 1955; Aloysia et al. 1961). The advent
of molecular technology has demonstrated that at least
two genes—the H-gene (FUT1) and the Secretor gene
(FUT2), encoding alpha (1,2) fucosyltransferases—con-
trol the complex epistatic effect (Koda et al. 1997). Mu-
tations in the FUT1 gene lead to lack of ABH antigen
on red blood cells, whereas mutations in FUT2 suppress
the formation of ABH antigen in saliva and other body
fluids. The classic Indian Bombay phenotype results
from a T725G mutation of FUT1 and the gene deletion
of FUT2. Additional molecular variants of the classic

Bombay phenotype that involve only FUT1 or FUT2
have been described.

Vieland and Huang (2003b) used a definition of epis-
tasis that differs not only from the classical concept of
epistasis, as they freely admit, but also from the modern
definition of epistasis as used in quantitative genetics. In
classical genetics, epistasis and hypostasis are the inter-
locus analogues of the intralocus concepts of dominance
and recessiveness. In the case of one locus, the effect of
one allele masks the effect of another allele; the masking
allele is termed “dominant” and the masked allele “re-
cessive.” In the case of two (or more) loci, the two alleles
at one locus mask the effect of the two alleles at another
locus; the masking alleles are termed “epistatic” and the
masked ones “hypostatic.” In our example, alleles at the
ABO locus are hypostatic to alleles at FUT1 and FUT2,
whereas the latter are epistatic to those at the ABO locus.
Farral (2003) and Cordell (2003) have discussed in detail
that, under the definitions of epistasis used in quanti-
tative genetics, it is not true that heterogeneity and epis-
tasis cannot be distinguished on the basis of ASP marker
data.

In the appendix, we show that, specifically for ASPs
and their definition of epistasis, Vieland and Huang’s
mathematical derivation results from the assumption of
joint Hardy-Weinberg equilibrium proportions for two
trait loci—which we believe is an unrealistic mathe-
matical assumption—rather than from any mathemati-
cal principle. We do this using the same notation, and
making all the same assumptions, as in the section of
their paper titled “Assumptions and Notation.”

Although the assumption of joint Hardy-Weinberg
equilibrium proportions—just like the assumption that
unselected sib pairs, in the absence of inbreeding, share
half their alleles identical by descent—may be a reason-
able assumption at the time of conception, we believe it
to be an unreasonably arbitrary assumption for any later
time point. Most conceptions are never born (Croteau
et al. 2002; Edwards 2003), so, by as early as birth,
there is ample opportunity for selection or meiotic drive
to disrupt both chance allele sharing at a single locus
and joint equilibrium proportions at two loci. Selection
may disrupt linkage equilibrium between a marker and
a trait locus, or even between two marker loci—but we
believe that disruption of joint equilibrium proportions
for two trait loci is even more likely, especially if the
trait is one for which there may be any form of selection,
including meiotic drive.

In conclusion, the necessary assumption that ran-
domly sampled sib pairs always share half their alleles
identical by descent is a serious limitation of ASP linkage
analysis, and we believe that epistasis is best defined as
a statistical concept of dependent gene action rather than
as a departure from a “fundamental heterogeneity equa-
tion” based on mathematical assumptions that do not
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follow from well-established biological facts. However,
it is clear that any ASP design that does not include some
DSPs may be unable to validly detect epistasis, regardless
of the validity of the proof offered by Vieland and Huang
(2003b). A limitation of using an ASP design that is
much more serious than the possible confounding of
heterogeneity and epistasis (which is more a question of
assumptions and definitions than biological reality) is
that linkage results based on ASPs alone can easily lead
to false-positive results. Similarly, any test that purports
to gain power by pooling the “information” available
from ASPs alone with that available from comparing

ASPs and DSPs (Forrest and Feingold 2000) should be
used with caution.
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Appendix

We show here that, without the critical assumption of joint Hardy-Weinberg equilibrium proportions, equation
(1) below does not necessarily follow from a probability truism that Vieland and Huang (2003b) used to capture
the biological meaning of independent gene action at each of two loci.

Assume two trait loci, each with two alleles (A and a; B and b). The allele frequencies are ,p p P(A) q pA A

, and similarly for . Assume that the trait loci are unlinked to each other, that each is linked1 � p p P(a) p , qA B B

to a marker, and that the two markers are unlinked to each other. There is linkage equilibrium between each marker
and the trait, as well as between the two markers. We take as our example a double recessive trait phenotype with
no phenocopies. The essence of Vieland and Huang’s mathematical derivation then hinges on two further as-
sumptions:

1. The two trait loci have a genotypic distribution that follows joint Hardy-Weinberg equilibrium proportions,
with the result that

( )f p f � f � f # f , (1)AB A B A B

where is the penetrance of the double homozygote aabb, is the penetrance of aa whether the genotype at thef fAB A

B locus is BB or Bb, and is the penetrance of bb whether the genotype at the A locus is AA or Aa.fB

2. Two-locus epistasis is defined to be any relationship among the penetrances that does not satisfy equation (1),
“on the grounds that either the genes act independently or not” (Vieland and Huang 2003a, p. 1471).

Let K be the total prevalence of a disease, the prevalence due to the action of genotypes at the A locus alone,KA

and the prevalence due to genotypes at the B locus alone. It then follows, from elementary probability, thatKB

K p K � K � (K # K ) . (2)A B A B

We now show that, in the absence of phenocopies, for a double recessive trait phenotype, equation (1) only follows
from equation (2) on the assumption of joint Hardy-Weinberg equilibrium proportions. (An analogous argument
can be made for a double dominant or a dominant-recessive trait phenotype.)

Our specific claim is that, if , , and , where is the joint genotypic frequency2 2f 1 0 f 1 0 P(aa,bb) ( q # q P(aa,bb)A B A B

of the two-locus genotype aabb, then, for a double recessive trait phenotype with no phenocopies, equation (1)
does not follow from equation (2). We prove this by contradiction: Let . In the case2 2P(aa,bb) p q # q � �, � ( 0A B

of a double recessive trait phenotype, when there are no phenocopies and we assume Hardy-Weinberg equilibrium
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at each locus, is defined to be , and is defined to be . Therefore, we have the following result:2 2K q # f K q # fA A A B B B

K p [P(aa,BB) � P(aa,Bb)] # f � [P(AA,bb) � P(Aa,bb)] # f � P(aa,bb) # fA B AB

p [P(aa) � P(aa,bb)] # f � [P(bb) � P(aa,bb)] # f � P(aa,bb) # fA B AB

p P(aa) # f � P(bb) # f � P(aa,bb) # (f � f � f )A B A B AB

2 2p q # f � q # f � P(aa,bb) # (f � f � f )A A B B A B AB

p K � K � P(aa,bb) # (f � f � f ) .A B A B AB

This, along with the assumption that equation (2) is true, implies that

P(aa,bb)(f � f � f ) p K # KA B AB A B

or, equivalently, that

2 2 2 2(q # q � �)(f � f � f ) p q # q # f # f . (3)A B A B AB A B A B

But, if equation (1) follows from equation (2), then equation (1) is true—that is,

( )f p f � f � f # f ,AB A B A B

and so equation (3) becomes

2 2 2 2(q # q � �)(f # f ) p q # q # f # f .A B A B A B A B

This leads to

� # f # f p 0 ,A B

which is a contradiction to , , and .� ( 0 f 1 0 f 1 0A B
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